Try Our New BETA Version
GO
(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Children's Library | Biodiversity Heritage Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload

View the book

item image

Read Online
(11.1 M)PDF
EPUB
Kindle
Daisy
(1.7 M)Full Text
(11.7 M)DjVu


All Files: HTTPS Torrent (2/0)

Help reading texts

Resources

Bookmark

Mackay Information Theory Inference Learning Algorithms



fullscreen
Author: Prof. David Mackay
Keywords: Information theory; machine learning
Language: English
Collection: opensource

Description

This is an outstanding book by Prof. David MacKay (of U. of Cambridge). It is downloadable from author's web page: http://www.inference.phy.cam.ac.uk/mackay/.

Please spread the word, and tell your profs to use this free book in their courses.

This is an e-book free to read and share electronically as indicated so by the author. However, you are not allowed to print the whole book, instead you should order it from the publisher.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction to Information Theory . . . . . . . . . . . . . 3
2 Probability, Entropy, and Inference . . . . . . . . . . . . . . 22
3 More about Inference . . . . . . . . . . . . . . . . . . . . . 48
I Data Compression . . . . . . . . . . . . . . . . . . . . . . 65
4 The Source Coding Theorem . . . . . . . . . . . . . . . . . 67
5 Symbol Codes . . . . . . . . . . . . . . . . . . . . . . . . . 91
6 Stream Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7 Codes for Integers . . . . . . . . . . . . . . . . . . . . . . . 132

II Noisy-Channel Coding . . . . . . . . . . . . . . . . . . . . 137
8 Dependent Random Variables . . . . . . . . . . . . . . . . . 138
9 Communication over a Noisy Channel . . . . . . . . . . . . 146
10 The Noisy-Channel Coding Theorem . . . . . . . . . . . . . 162
11 Error-Correcting Codes and Real Channels . . . . . . . . . 177

III Further Topics in Information Theory . . . . . . . . . . . . . 191
12 Hash Codes: Codes for Efficient Information Retrieval . . 193
13 Binary Codes . . . . . . . . . . . . . . . . . . . . . . . . . 206
14 Very Good Linear Codes Exist . . . . . . . . . . . . . . . . 229
15 Further Exercises on Information Theory . . . . . . . . . . 233
16 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . 241
17 Communication over Constrained Noiseless Channels . . . 248
18 Crosswords and Codebreaking . . . . . . . . . . . . . . . . 260
19 Why have Sex? Information Acquisition and Evolution . . 269

IV Probabilities and Inference . . . . . . . . . . . . . . . . . . 281
20 An Example Inference Task: Clustering . . . . . . . . . . . 284
21 Exact Inference by Complete Enumeration . . . . . . . . . 293
22 Maximum Likelihood and Clustering . . . . . . . . . . . . . 300
23 Useful Probability Distributions . . . . . . . . . . . . . . . 311
24 Exact Marginalization . . . . . . . . . . . . . . . . . . . . . 319
25 Exact Marginalization in Trellises . . . . . . . . . . . . . . 324
26 Exact Marginalization in Graphs . . . . . . . . . . . . . . . 334
27 Laplace’s Method . . . . . . . . . . . . . . . . . . . . . . . 341
28 Model Comparison and Occam’s Razor . . . . . . . . . . . 343
29 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 357
30 Efficient Monte Carlo Methods . . . . . . . . . . . . . . . . 387
31 Ising Models . . . . . . . . . . . . . . . . . . . . . . . . . . 400
32 Exact Monte Carlo Sampling . . . . . . . . . . . . . . . . . 413
33 Variational Methods . . . . . . . . . . . . . . . . . . . . . . 422
34 Independent Component Analysis and Latent Variable Mod-
elling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
35 Random Inference Topics . . . . . . . . . . . . . . . . . . . 445
36 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . 451
37 Bayesian Inference and Sampling Theory . . . . . . . . . . 457

V Neural networks . . . . . . . . . . . . . . . . . . . . . . . . 467
38 Introduction to Neural Networks . . . . . . . . . . . . . . . 468
39 The Single Neuron as a Classifier . . . . . . . . . . . . . . . 471
40 Capacity of a Single Neuron . . . . . . . . . . . . . . . . . . 483
41 Learning as Inference . . . . . . . . . . . . . . . . . . . . . 492
42 Hopfield Networks . . . . . . . . . . . . . . . . . . . . . . . 505
43 Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . 522
44 Supervised Learning in Multilayer Networks . . . . . . . . . 527
45 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . 535
46 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . 549

VI Sparse Graph Codes . . . . . . . . . . . . . . . . . . . . . 555
47 Low-Density Parity-Check Codes . . . . . . . . . . . . . . 557
48 Convolutional Codes and Turbo Codes . . . . . . . . . . . . 574
49 Repeat–Accumulate Codes . . . . . . . . . . . . . . . . . . 582
50 Digital Fountain Codes . . . . . . . . . . . . . . . . . . . . 589

VII Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . 597
A Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
B Some Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 601
C Some Mathematics . . . . . . . . . . . . . . . . . . . . . . . 605
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620


Write a review
Downloaded 382 times
Reviews
Average Rating: 5.00 out of 5 stars5.00 out of 5 stars5.00 out of 5 stars5.00 out of 5 stars5.00 out of 5 stars

Reviewer: Gök - 5.00 out of 5 stars5.00 out of 5 stars5.00 out of 5 stars5.00 out of 5 stars5.00 out of 5 stars - October 25, 2013
Subject: Outstanding book!
Title says it all! Please spread the word, and tell your profs to use this book in their teaching.

Selected metadata

Identifier: MackayInformationTheoryFreeEbookReleasedByAuthor
Mediatype: texts
Scanner: Internet Archive HTML5 Uploader 1.4.1
Identifier-access: http://archive.org/details/MackayInformationTheoryFreeEbookReleasedByAuthor
Identifier-ark: ark:/13960/t0xp95f0c
Ppi: 300
Ocr: ABBYY FineReader 9.0

Terms of Use (31 Dec 2014)